A hybrid Lagrangean heuristic with GRASP and path-relinking for set k-covering
نویسندگان
چکیده
The set multicovering or set k-covering problem is an extension of the classical set covering problem, in which each object is required to be covered at least k times. The problem finds applications in the design of communication networks and in computational biology. We describe a GRASP with pathrelinking heuristic for the set k-covering problem, as well as the template of a family of Lagrangean heuristics. The hybrid GRASP Lagrangean heuristic employs the GRASP with path-relinking heuristic using modified costs to obtain approximate solutions for the original problem. Computational experiments carried out on 135 test instances show experimentally that the Lagrangean heuristics performed consistently better than GRASP as well as GRASP with path-relinking. By properly tuning the parameters of the GRASP Lagrangean heuristic, it is possible to obtain a good trade-off between solution quality and running times. Furthermore, the GRASP Lagrangean heuristic makes better use of the dual information provided by subgradient optimization and is able to discover better solutions and to escape from locally optimal solutions even after the stabilization of the lower bounds, when other Lagrangean strategies fail to find new improving solutions.
منابع مشابه
Experiments with LAGRASP heuristic for set k-covering
The set k-covering problem is a variant of the classical set covering problem, in which each object is required to be covered at least k times. We describe a hybrid Lagrangean heuristic, named LAGRASP, which combines subgradient optimization and GRASP with path-relinking to solve the set kcovering problem. Computational experiments carried out on 135 test instances show experimentally that by p...
متن کاملAutomatic Tuning of GRASP with Evolutionary Path-Relinking
Heuristics for combinatorial optimization are often controlled by discrete and continuous parameters that define its behavior. The number of possible configurations of the heuristic can be large, resulting in a difficult analysis. Manual tuning can be time-consuming, and usually considers a very limited number of configurations. An alternative to manual tuning is automatic tuning. In this paper...
متن کاملGreedy randomized adaptive search procedure with exterior path relinking for differential dispersion minimization
We propose several new hybrid heuristics for the differential dispersion problem, the best of which consists of a GRASP with sampled greedy construction with variable neighborhood search for local improvement. The heuristic maintains an elite set of high-quality solutions throughout the search. After a fixed number of GRASP iterations, exterior path relinking is applied between all pairs of eli...
متن کاملHybridizations of GRASP with Path-Relinking
A greedy randomized adaptive search procedure (GRASP) is a metaheuristic for combinatorial optimization. GRASP heuristics are multistart procedures which apply local search to a set of starting solutions generated with a randomized greedy algorithm or semi-greedy method. The best local optimum found over the iterations is returned as the heuristic solution. Path-relinking is a search intensific...
متن کاملGrasp with Exterior Path Relinking for Differential Dispersion Minimization
We propose several new hybrid heuristics for the differential dispersion problem are proposed, the best of which consists of a GRASP with sampled greedy construction with variable neighborhood search for local improvement. The heuristic maintains an elite set of high-quality solutions throughout the search. After a fixed number of GRASP iterations, exterior path relinking is applied between all...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & OR
دوره 40 شماره
صفحات -
تاریخ انتشار 2013